ELEC1200: A System View of Communications: from Signals to Packets Lecture 9

- Review:
 - Analyzing Bit Errors in the Binary Channel Model
- Inside the Binary Channel
 - Average Power in Signals
 - Modeling random noise
 - Calculating the probability of error conditioned on the input
- Calculating bit error rate
 - Effect of changing threshold
 - Effect of changing signal
 - Effect of changing noise
- Signal to Noise Ratio

- Binary: input/output are either 0/1.
- Usually, the input and output are the same, but occasionally (with probability P_{e0} or P_{e1}), a bit is flipped.
- The BER can be calculated by

$$BER = P_{e0} \cdot P[IN=0] + P_{e1} \cdot P[IN=1]$$

- Under our simplifying assumptions, we can consider one bit at a time.
- · The channel adds an offset r_{min} and scaling by r_{max} - r_{min}

$$\mathbf{r} = \begin{cases} \mathbf{r}_{min} & \text{if IN} = \mathbf{0} \\ \mathbf{r}_{max} & \text{if IN} = \mathbf{1} \end{cases}$$

- The noise is additive: y = r + x
- The output is obtained by thresholding y:

$$out = \begin{cases} 0 & \text{if } y < T \\ 1 & \text{if } y \ge T \end{cases} \qquad T = threshold$$

ELEC1200

Parameters that determine BER

- \cdot In order to predict the BER, we need to know
 - P[IN=0] (we can find P[IN=1] = 1 P[IN=0])
 - P_{e0}
 - P_{e1}
- Usually, the transmitter determines P[IN=0]
 - e.g. P[IN=0] = P[IN=1] = 0.5
- P_{e0} and P_{e1} depend on
 - the transmit levels (r_{min}, r_{max})
 - the power in the noise

This lecture examines this dependency

Intuition

- \cdot The probabilities of error, P_{e0} and $\mathrm{P}_{\mathrm{e1}},$ should be small if
 - The transmit levels are widely separated, i.e.
 - r_{max} r_{min} is large
 - The power used to transmit the signal is large
 - The noise is small, i.e.
 - The values of the noise do not vary over a wide range
 - \cdot The power of the noise is small
- In this case, the BER will also be small
 - Remember that the BER lies between P_{e0} and P_{e1}
- Implicit in these definitions is the idea of the power in signals.

Average Power in Signals

 For communication, we usually have signals that vary around an average value

• For communication, we are interested in how much the signals differ from their average:

$$\Delta \mathbf{r} = \mathbf{r} - \mathbf{r}_{ave}$$

 Since this changes over time and can be both positive and negative, we average the squared value over a number of samples

$$\mathsf{P} = \frac{1}{\mathsf{N}} \sum_{n=1}^{\mathsf{N}} \left(\Delta \mathbf{r}(n) \right)^{2}$$

Average Power for Bit Signals

If 0 and 1's are equally likely,

$$r_{ave} = \frac{1}{2}r_{min} + \frac{1}{2}r_{max}$$

- If IN = 0, $\Delta r = r_{min} - r_{ave}$ $= r_{min} - (\frac{1}{2}r_{min} + \frac{1}{2}r_{max}) = \frac{1}{2}(r_{min} - r_{max})$
- If IN = 1, $\Delta r = r_{max} - (\frac{1}{2}r_{min} + \frac{1}{2}r_{max}) = \frac{1}{2}(r_{max} - r_{min})$
 - The average power is $P_{\text{signal}} = \frac{1}{2} \left[\frac{1}{2} (\mathbf{r}_{\text{max}} - \mathbf{r}_{\text{min}}) \right]^2 + \frac{1}{2} \left[\frac{1}{2} (\mathbf{r}_{\text{max}} - \mathbf{r}_{\text{min}}) \right]^2 = \frac{\left(\mathbf{r}_{\text{max}} - \mathbf{r}_{\text{min}} \right)^2}{4}$

ELEC1200

٠

Power Consumption

- Power consumption directly affects battery life.
- Power is energy used per unit time
- Batteries contain a fixed amount of energy. The higher the power consumption of the device they are powering, the faster this energy is used up.
- Calculating the amount of energy in a battery
 - Batteries are typically rated at fixed voltage in volts (V) and a charge capacity in milliamp-hours (mAh)
 - Multiplying these together gives total energy in milliwatthours (mWh)
 - For example, a mobile phone battery rated at 3.7V and 1000mAh contains 3700mWh of energy
- Typical power consumption of
 - A microwave oven 1000W
 - A desktop computer 120W
 - A notebook computer 40W
 - A human brain 10W
 - A mobile phone 1W

Noise levels in Mobile Phones

- It determines the minimum signal that can be received by radios and receivers
- What is the typical noise power present at the input of a mobile phone?
- Extremely, extremely small 10⁻¹⁵W
 - 1 Watt = Unit of Power
 - Lifting an apple (~100g) up by 1 m in 1s requires approximately 1W
- When your received signal falls to about this level your phone will lose its connection
- \cdot The exact level is determined by
 - Quality of circuits and components
 - Symbol (bit) rate

- Even though the value of the noise is quite random, the statistics of a large number of samples are quite stable.
- Create histograms of samples •
 - Height at each sample value is the percentage of samples near that sample value.
- As we collect more samples, the histogram gets smoother and smoother.

Probability Density Function

- The histogram is still not smooth since we count the samples in bins of finite width.
- As the bins get smaller and smaller, the curve gets smoother and smoother, and approaches a function known as the probability density function (pdf)

Gaussian Density Function

- The probability density function of many naturally occurring random quantities, such as noise or measurement errors, tends to have a hill or bell-like shape, known as a Gaussian distribution.
- This very important result is due to a mathematical result known as the Central-Limit Theorem.
- This random variable is so common that it is also called the "normal" random variable.
- Applications:
 - Noise voltages that corrupt transmission signals.
 - Position of a particle undergoing Brownian motion
 - Voltage across a resistor

The wider the PDF, the larger the noise.

Parameters controlling the shape

- \cdot The mean (m) of a Gaussian random variable is
 - Its average value over many samples
 - The center location of the pdf
- · The standard deviation (σ) is
 - An indication of how "spread out" the samples are
 - A measure of the width of the pdf
- The variance (σ^2) is
 - The square of the standard deviation
 - <u>The average power over many samples</u> <

Changing the Mean and Variance

- Changes in mean shift the center of mass of PDF
- \cdot Changes in variance narrow or broaden the PDF
 - Note that area of PDF must always remain equal to one

Calculating Probability by Integrating

• The probability that the noise x is in (x_1, x_2) is the area under the probability density function between x_1 and x_2

Example Probability Calculation $f_{X}(x)$

- Verify that overall area is 1:
 - Since the curve defines a rectangle, the area is base \times height: $2 \times \frac{1}{2} = 1$
- Probability that x is between 0.5 and 1.0:

- The area of the shaded region is
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

- Thus,
$$P[0.5 < x < 1.0] = \frac{1}{4}$$

The Q-function

• The Q-function gives the probability that a Gaussian random variable X with m = 0and $\sigma = 1$ is greater than a particular value T

• Properties

$$P[X \le T] = 1 - Q(T)$$

 $Q(0) = \frac{1}{2}$

There is no closed-form expression for Q(T). Its value must be found from tables or the MATLAB function

qfunc(T)

Linear Transformations of Gaussian

- Suppose X is Gaussian with m=0 and $\sigma=1$.
- If Y=aX+b, then
 Y is Gaussian
 with m=b and σ=a!
- We can compute probabilities for X using the Q function, e.g.
 P[X > T] = Q(T)
- We can also compute probabilities for Y using the Q function, since

$$\mathsf{P}[\mathsf{Y} > \mathsf{T}] = \mathsf{Q}\left(\frac{\mathsf{T} - \mathsf{m}}{\sigma}\right)$$

PDF of Received Signal + Noise

- Assume the noise x is Gaussian with zero mean and variance (power) $\sigma^2.$
- The PDF of y = r + x depends upon whether IN = 0 or 1

• If IN=0,
$$y = r_{min} + x$$

 \cdot y is Gaussian with mean r_{min} and variance σ^2

- If IN=1,
$$y = r_{max} + x$$

 \cdot y is Gaussian with mean r_{max} and variance σ^2

P_{e0} (Probability of Error if IN=0)

- If IN = 0,
 - $y = r_{min} + x$
 - y is a Gaussian with mean r_{min} and variance σ^2
- There is an error if
 - OUT = 1
 - The noise pushes y above T

$$P_{e0} = P[y > T \text{ if IN} = 0]$$
$$= Q\left(\frac{T - r_{min}}{\sigma}\right)$$

 The probability of error decreases as T increases.

P_{e1} (Probability of Error if IN=1)

- If IN = 1,
 - $y = r_{max} + x$
 - y is a Gaussian with mean r_{max} and variance σ^2
- There is an error if
 - OUT = 0
 - The noise pushes y <u>below</u> T

$$P_{e_1} = P[y < T \text{ if } IN = 1]$$

$$= 1 - Q\left(\frac{T - r_{max}}{\sigma}\right)$$

- The probability of error increases with T.
- Thus, choosing T is a tradeoff between minimizing P_{e0} and P_{e1} .

Predicting BER

If 0 and 1 input bits are equally likely, BER = $\frac{1}{2}P_{e0} + \frac{1}{2}P_{e1}$

BER under changing threshold

ELEC1200

Signal-to-Noise Ratio

• It is not the absolute signal or noise power that is important, but rather the Signal-to-Noise Ratio (SNR).

- SNR is often measured in decibels (dB): $SNR = 10 \log_{10} \frac{P_{signal}}{P_{signal}}$ (dB)
 - SNR = OdB means signal and noise power are equal
 - SNR = 10dB means signal power is 10 times noise power
 - SNR = 20dB means signal power is 100 times noise power

Factors affecting SNR

- Received power decreases as the receiver moves away
- The noise remains pretty constant
- Decrease in received signal power leads to decreased SNR
- Once SNR falls below around 10dB, the receiver will stop functioning- for a mobile phone this is around 10⁻¹⁴W

BER under changing Signal Power

BER under changing Noise Power

ELEC1200

Summary

- In digital systems noise leads to bit errors
- Noise can be modeled by statistical distributions
- By using our models of noise it is possible to find exact expressions for the Bit Error Rate (BER) as
 - The signal power changes
 - The noise power changes
 - The threshold changes
- The key parameter determining BER is the Signal to Noise Ratio (SNR)
- BER decreases as SNR increases