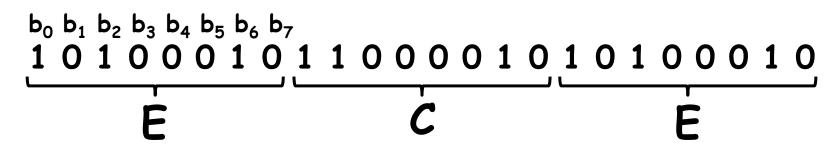
ELEC1200: A System View of Communications: from Signals to Packets Lecture 2

- Recap of last time:
 - Bit sequences
 - Representing bit sequences as waveforms
- Discrete time waveforms
- Representing discrete time bit waveforms
 - Unit step function
 - Sums of unit step functions
 - Equivalent representations of waveforms

Bit Sequences

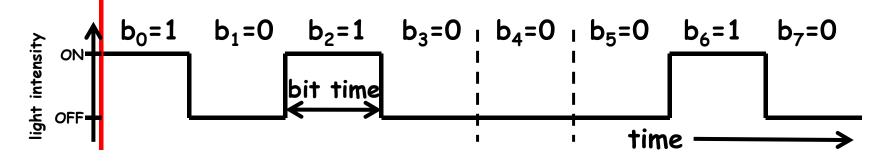
• Information we want to send can be encoded as long bit sequences created by concatenating binary code words.

b ₇ =	7 = 0 USASCII code chart												
06 D5 D	4 -						°°,	° , ,	۰,	' ° ₀	'°,	1,0	۱ ₁
0	Þ3	b2	Þ.	b.o.	Row	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL .	DLE	SP	0	0	Р	`	P
	0	0	0	1	1	SOH	DC1	!	1	A	Q .	0	9
	0	0	1	0	2	STX	DC2		2	B	R	b	r
	0	0	1	I	3	ETX	DC3	#	3	C	S	c	5
	0	1	0	0	4	EOT	DC4	1	4	D	т	d	1
	0	I	0	1	5	ENQ	NAK	%	5	E	U	e	υ
	0	1	1	0	6	ACK	SYN	8	6	F	v	f	v
	0	T	1	1	7	BEL	ETB		7	G	w	9	w
	1	0	0	0	8	BS	CAN	(8	н	x	h	×
	1	0	0	1	9	нт	EM)	9	1	Y	i	У
	T	0	1	0	10	LF	SUB	*	:	J	Z	j	z
	1	0	1	1	11	VT	ESC	+	:	к	C	k	{
	1	1	0	0	12	FF	FS		<	L	1	l	1
	1	1	0	I	13	CR	GS	-	×	м	3	m	}
	1	1	1	0	14	SO	RS		>	N	^	n	\sim
	T	1	1	I	15	SI	US	1	?	0		0	DEL

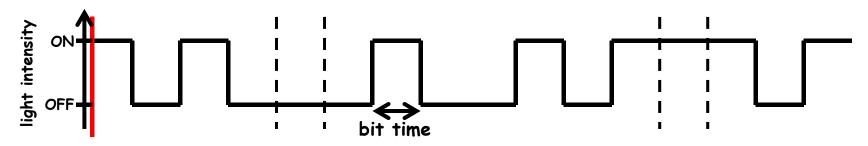


Representing Bit Sequences as Waveforms

• A bit sequence can be encoded by changing the value of the physical variable over time.

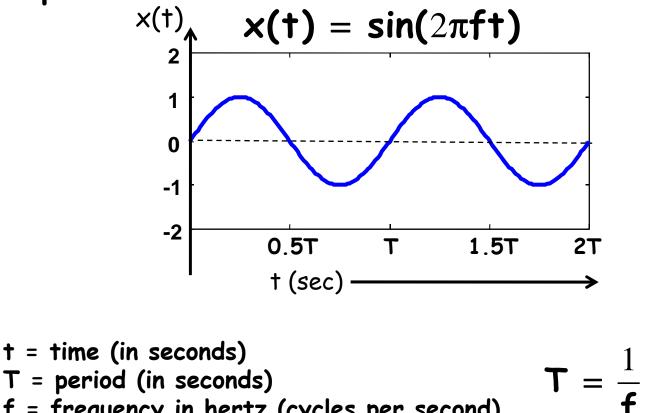


- Each bit is encoded by holding the state constant over a length of time, known as the bit time.
- The shorter the bit time, the faster we can transmit information (bits)



Representing Signals or Waveforms

- Mathematically, a signal can be represented as a ٠ function of one or more variables, e.g. time
- Example:



f = frequency in hertz (cycles per second)

Continuous and Discrete Time Signals

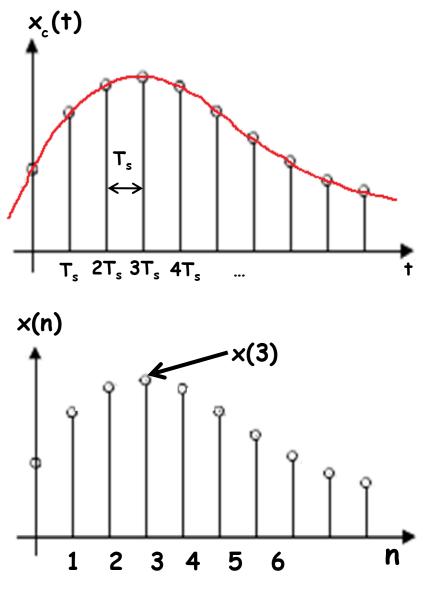
Air Temperature in Clear Water Bay A Continuous Time ٠ 30 (CT) signal has a known value for all points in a time 28 interval Aug 20 0:00 Aug 10 0:00 Aug 15 0:00 time Temperature Records from HK Observatory • A Discrete Time (DT) signal has a known 30 value only at a discrete 28 (discontinuous) set of time points. Aug 10 0:00 Aug 15 0:00 Aug 20 0:00 time 5 ELEC1200

From continuous to discrete time: sampling

- We can obtain discrete time waveform by <u>sampling</u> (recording) a continuous time waveform x_c(t) at regular intervals in time.
 - T_s = <u>sample period</u>
- We typically index (identify, label) each sample by an integer sample number, n.
- We denote the sampled waveform by x(n)
- The nth sample corresponds to the waveform at time

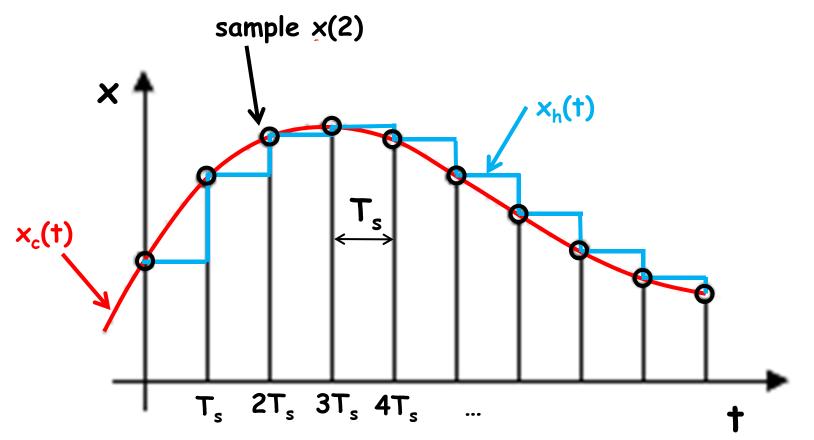
$$t = nT_s$$

i.e.
$$x(n) = x_s(nT_s)$$



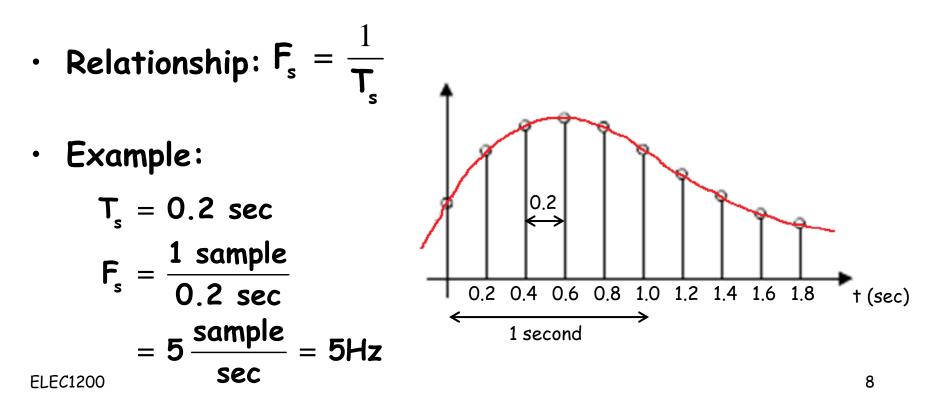
From discrete to continuous time

• Given samples x(n), we can obtain a continuous time waveform $x_h(t)$ by "holding" the waveform at x(n)between times nT_s , and $(n+1)T_s$



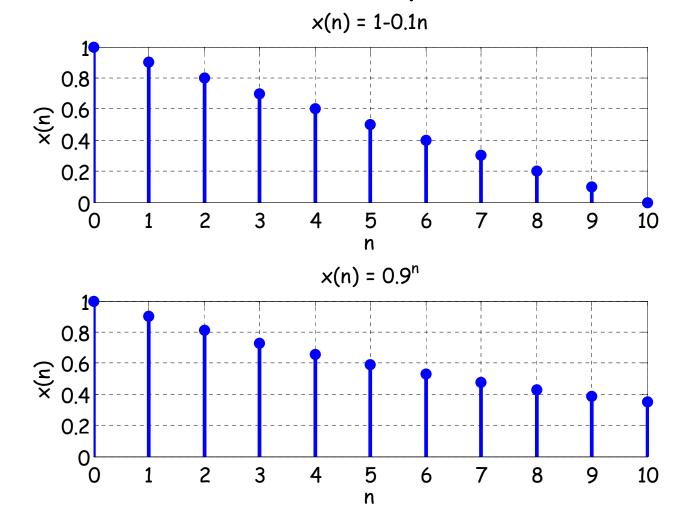
Sampling period vs. frequency

- T_s = <u>sample period</u> (time interval between samples)
 Typical unit: seconds (s, sec)
- $F_s = sampling frequency or rate (number of samples in a fixed period of time)$
 - Typical unit: Hertz (Hz, samples per second)



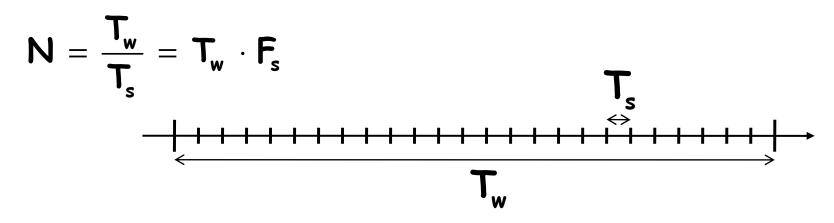
Mathematical Representations

Mathematically, we define sampled signals as functions of n.
 We can represent these functions using formulas or graphs.
 Each is useful, but in different ways.



Number of samples

• If we sample a signal at intervals of T_s over a finite time window T_w , we obtain N samples where

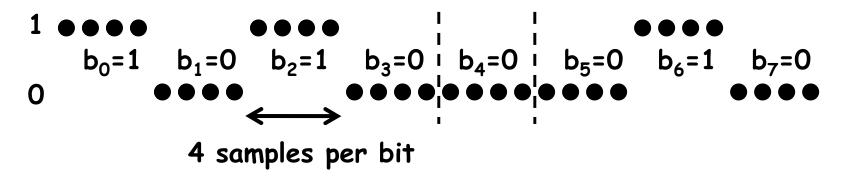


- This is an example of an engineering <u>tradeoff</u>: a higher sample frequency is
 - Good: Less information lost since less time between samples
 - Bad: More storage needed since more samples for a given length of time.

From Bit Sequences to Bit Waveforms

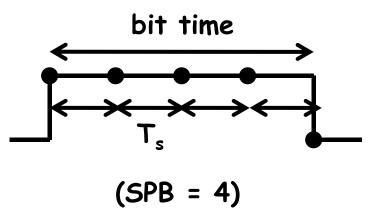
• Recall that bits can be encoded by holding a physical variable constant over a "bit time."

 In discrete time, we encode bits as waveforms by holding sample values constant over a number of "samples per bit" (SPB)



Bit Rate, Sampling Frequency, SPB

- The bit rate measures the number of bits we can send in a given unit of time. We generally want this to be as large as possible.
- We get faster bit rates by
 - Increasing sample rate (F_s), or
 - Decreasing samples per bit (SPB)
- <u>In this course, we will always use</u> <u>the same sample rate</u>



bit time =
$$T_s * SPB$$

bit rate = $\frac{1}{bit time}$
= $\frac{1}{T_s * SPB}$
= $\frac{F_s}{SPB}$

Commonly used SI (metric) prefixes

 SI = Système international d'unités (International System of Units)

Text	Symbol	Factor				
tera	Т	10000000000 (1012)				
giga	G	100000000 (10 ⁹)				
mega	Μ	100000 (106)				
kilo	k	1000 (10 ³)				
(none)	(none)	1				
milli	m	0.001 (10-3)				
micro	μ	0.000001 (10-6)				
nano	n	0.00000001 (10 ⁻⁹)				
pico	р	0.00000000001 (10-12)				

Representing Bit Waveforms

- In order to describe the effect of the channel, we need a <u>convenient</u> way of representing (describing) the input.
- One way is with a graph:

• Another way is with a formula, such as:

$$\mathbf{x(n)} = \begin{cases} 1 & 0 \le n < 4 \\ 0 & 4 \le n < 8 \\ \vdots & \vdots \\ \mathbf{b_k} & \mathbf{k} \cdot \mathbf{SPB} \le n < (\mathbf{k} + 1) \cdot \mathbf{SPB} \\ \vdots & \vdots \end{cases}$$

• However, it is difficult to work with this formula. We seek a better formula.

Unit Step Function

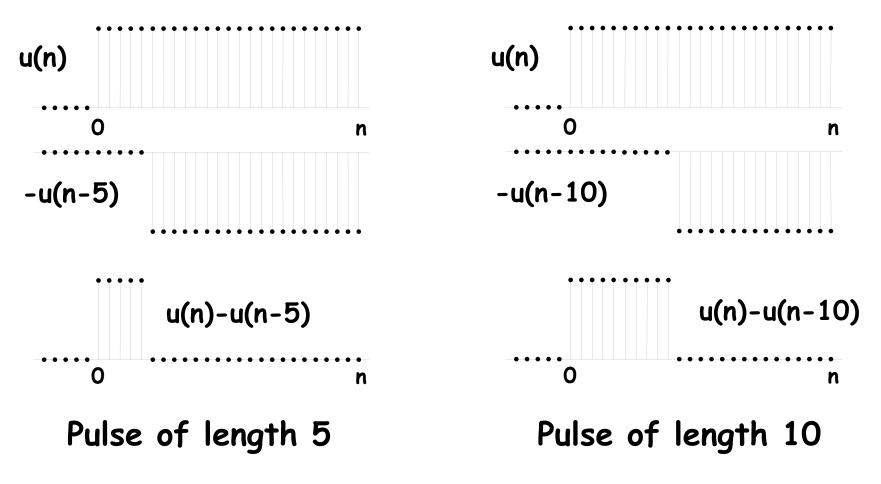
• In order to get a better formula to define a bit waveform, we define the unit step function u(n)

$$u(n) = \begin{cases} 0 & n < 0 \\ 1 & 0 \le n & 1 \\ 0 & & & \\ 0 & & & \\ 0 & & & \\ n & & \\ 0 & & & \\ n & & \\ 0 & & & \\ n & & \\ 0 & & & \\ n & & \\ 0 & & & \\ n & & \\ n$$

 \cdot We can delay the step as follows

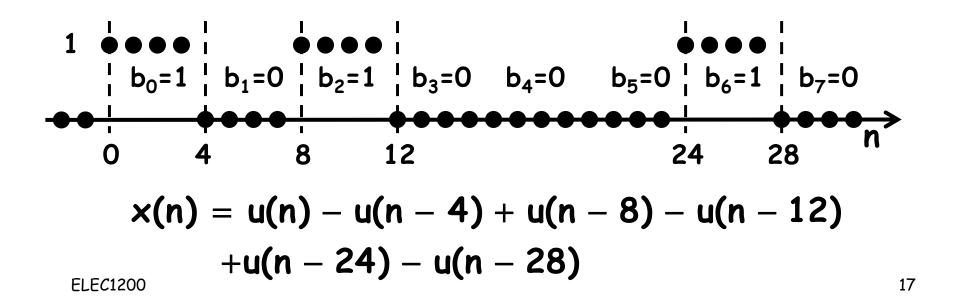
Combining Step Functions

• We can describe a single pulse as the difference between two step functions



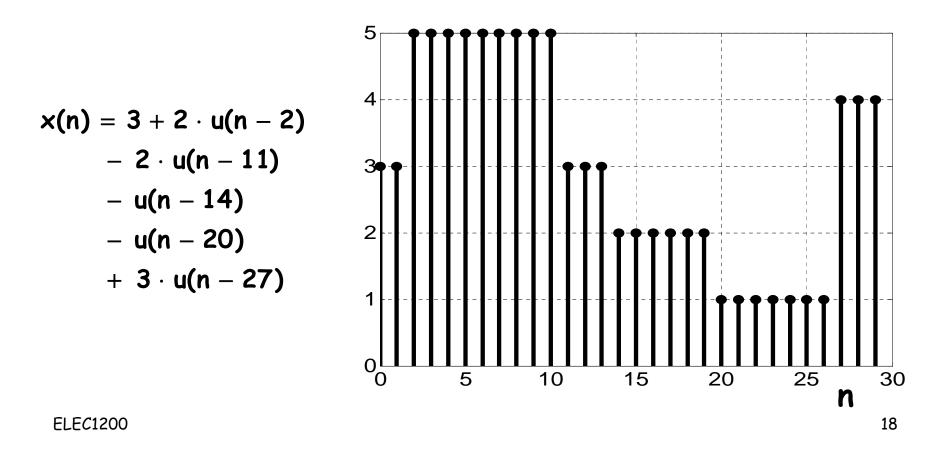
Representing Bit Waveforms

- We can describe any bit sequence as the sum and difference of unit step functions.
- One step function every time a bit changes
 - If the bit changes from 0 to 1 at sample D, add u(n-D)
 - If the bit changes from 1 to 0 at sample D, subtract u(n-D)
 - If there is no change, add nothing



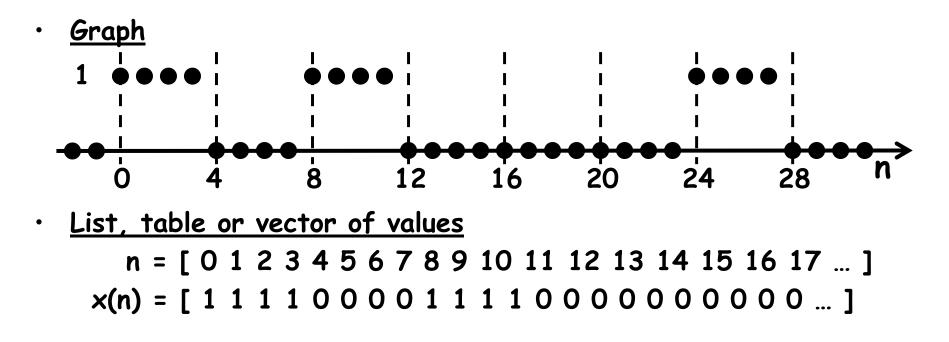
Arbitrary Sample Waveforms

 In fact, if we allow for step functions that are scaled (multiplied by a constant) <u>any</u> sample waveform can be expressed as the sums and differences of unit step functions!



Equivalent Representations of Waveforms

• <u>Verbal</u>: The encoding of the bit sequence 1,0,1,0,0,0,1 at 4 samples per bit.



• Sum of unit step functions x(n) = u(n) - u(n - 4) + u(n - 8) - u(n - 12) + u(n - 24) - u(n - 28)

Uses for different representations

- The four representations are equivalent in the sense that if we know one, we can obtain any of the others. However, they are useful in different situations.
- Verbal
 - Useful for communicating between people
- Graph
 - Useful for visualizing the waveform
- List, table or vector of values
 - Useful for representation and processing inside a computer (e.g. MATLAB)
- Sum of unit step functions
 - Useful for analyzing mathematically what happens to the waveform when it passes through a communication channel.

Next time

• We will see that we can describe the effects of transmission through a channel on <u>any signal</u> just by understanding what happens to a unit step function.