ELEC1200: A System View of Communications: from Signals to Packets Lecture 13

- Motivation: Filters
- Review: Fourier series expansion
- Frequency Response
 - The effect of an LTI system on sinusoids
 - Scale in amplitude
 - Shift in phase
 - Filter types
- Summary

Motivation: Filters

- A filter is something that allows only certain parts (components) of the input to pass through to the output.
- For example, a water filter might let all small molecules (e.g. water) through, but block most large particles.

Channels as Filters

- A communication channel can be viewed as a filter.
- Some parts of the signal (e.g. the long flat parts) pass through, but others (e.g. the fast changes) do not

- Questions we answer in this lecture:
 - What are the "components" of the input signal?
 - How do we describe how much of each component is passed from input to output

Signal Components

- We can decompose (break into parts) any signal by expressing it as a sum of "simpler" signals.
- For example, we have already seen that we can express any signal as the sum of scaled and delayed unit steps.

Problem with Decomposing as Unit Steps

 If we treat unit steps as our basic components, then the components of the output don't "look like" the components of the input.

- $\boldsymbol{\cdot}$ We wish to find a set of components such that
 - Any signal can be expressed as the sum of scaled and delayed versions of these components
 - The components still "look the same" after passing through the channel
- It turns out that cosine/sine waves can do this!

Review: Fourier Series

- In this lecture, we show how to describe an LTI system as a filter.
- To do this, we express the input and output signals using the Fourier Series expansion studied in the last lecture:

$$\mathbf{x(n)} = \mathbf{A}_{0} + \sum_{k=1}^{N/2} \mathbf{A}_{k} \cos(2\pi \mathbf{f}_{k}\mathbf{n} + \phi_{k}) \qquad \mathbf{f}_{k} = \frac{\mathbf{k}}{N}$$
$$= \sum_{k=0}^{N/2} \mathbf{A}_{k} \cos(2\pi \mathbf{f}_{k}\mathbf{n} + \phi_{k})$$

 Each signal is a combination of components which are cosines that are scaled in magnitude and shifted in phase.

Effect of LTI systems on Cosines

• The response of any LTI system to an input cosine wave is a cosine wave with the same frequency f, but scaled in amplitude by S(f) and shifted in phase by $\theta(f)$.

- · The scaling and shift are frequency dependent
 - S(f) is known as the <u>amplitude response</u> of the filter
 - $\theta(f)$ is known as the <u>phase response</u>
 - Together, they are referred to as the <u>frequency response</u>.

Computing the Output of an LTI system

- Step 1: Express the input as the sum of cosines
- Step 2: Scale and shift each cosine
- Step 3: By linearity, add the results together

• This gives the same answer as when we express the input as a sum of unit steps and add the responses to each step.

Amplitude Response

• The plot of amplitude response versus f tells us what the filter does.

Types of Filters

ELEC1200

٠

•

•

Example: Low Pass Filter $f_{co} = 48/256$

Example: Low Pass Filter $f_{co} = 24/256$

Example: Low Pass Filter $f_{co} = 8/256$

Example: High Pass Filter $f_{co} = 48/256$

Example: High Pass Filter $f_{co} = 24/256$

Example: High Pass Filter $f_{co} = 8/256$

Example: Band Pass Filter $f_c = 52/256$

Example: Band Pass Filter $f_c = 36/256$

18

Example: Band Pass Filter $f_c = 20/256$

The IR Channel

- The long flat parts (low frequencies) pass through the IR channel in the lab, but the sharp transitions (high frequencies) do not.
- Thus, we expect the IR channel to have a "low pass" characteristic.
- We will measure this in lab.

Step Response vs. Frequency Response

- The step response and the frequency response are equivalent
 - Both provide enough information to compute the output of a channel in response to any input.
 - One can be computed from the other
- Like the signal and its Fourier Series expansion, they are just different ways of looking at the same information
 - Step response shows how the channel output changes in time.
 - Useful for predicting the eye diagram and responses to bit waveforms.
 - Frequency response shows how the channel output responds to different frequencies.
 - Useful to understand the response to more complex signals.

22

f

Summary

- Using linearity, we can compute the response of an LTI system to any input by
 - Expressing the signal as a sum of cosines of different frequencies (Fourier Series Expansion)
 - Scaling each cosine by the amplitude response S(f) and shifting it by the phase response q(f)
 - Summing the resulting cosines to obtain the output
- \cdot This is known as working in the frequency domain.
- This gives the same answer as would be obtained by looking at the step response.
 - You are free to choose which to use, based on which is easier.
- Filters (LTI systems) are classified according to the shape of their amplitude response.

Appendix: Frequency Response

The scaling S(f) and phase shift \$\u03c6\$ (f) due to passing the cosine through an LTI system can be computed from a complex valued function H(f), called the <u>frequency response</u> of the system

