
ELEC1200: A System View of 
Communications: from Signals to PacketsCommunications: from Signals to Packets

Lecture 12
• Motivation• Motivation

– Music as a combination of sounds at different frequencies
• Cosine waves

– Continuous time
– Discrete time
Decomposing signals into a sum of cosines• Decomposing signals into a sum of cosines
– Amplitude Spectrum
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Motivation: Music
• Music is a combination of sounds with different frequencies:
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• In this lecture, we see that this is true of any waveform
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Visualizing the frequency content of music
• Windows Media Player
• Right click->Visualizations->Bars and Waves->Bars
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Sinusoidal Waves
Cosine Wave Sine Wave
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We only need cosines
π• A sine wave is just a cosine with a phase shift of 2
π
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General Form
• Any sinusiodal signal can be expressed as
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Discrete Time Cosines
• Consider a discrete time cosine waveform with N samples: 

Kcos(2 fn ) for  n 0,1, (N 1)π + φ = −

• In the following, we assume N is even.
• If we have only N samples, it turns out that we only need to 

consider N/2+1 frequencies:consider N/2+1 frequencies:

{ }K N
k 2

kf =  for k 0,1,
N

∈ fk is called a normalized frequency
It has units of cycles/sample

• For all N, it is always true that 0 ≤ fk ≤ 0.5

• k indicates how many times the cosine repeats in N samples

k
ncos(2 f n) cos(2 k )
N

π = π

• The larger k, the higher the frequency
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Discrete time cosines with varying fk
f1 = 1/64
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Normalized vs continuous frequency
%• Given a continuous cosine of frequency    and sampling at 

frequency Fs, we get a set of samples x(n):
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Sinusoidal Representation of Sampled Data
• Any sampled data waveform x(n) with N samples:

x(n) for  n 0,1, (N 1)= −K

can be expressed as the the sum of a N/2+1 cosine waves 
with frequencies

{ }K N
k 2

kf =  for k 0,1,
N

∈

using the equation

{ }k 2f f , ,
N

each term in the 
summation is called a

N/2

0 k k k
k 1

x(n) A A cos(2 f n )
=

= + π + φ∑
frequency component

• This equation is called the Fourier series expansion of x(n)
• Different waveforms are obtained by changing the values of Different waveforms are obtained by changing the values of 

Ak and φk
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Interpretation of
N/2

k k k
k 0

x(n) A cos(2 f n )
=

= π + φ∑
• Ak controls the amplitude of the cosine with frequency fk.
• φk controls the phase of the cosine with frequency fk.
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Amplitude, Phase and Frequency
• Amplitude Ak

– tells us how much of each frequency there is.
– A0 controls the average level of the signal and is A0 controls the average level of the signal and is 

sometimes called the DC component.
• Phase φk

N t  i t t  j t hift  h i  l ft  i ht– Not so important, just shifts each cosine left or right.
• Frequency fk

– tells us about how quickly the signal changesu u w qu y g g
– Low frequencies (small k) indicate slow changes.
– High frequencies (large k) indicate fast changes.
W   t i t t d i  th  lit d  d h  • We are most interested in the amplitude and how 
it changes with k.
– The frequency components with the largest amplitude are q y p g p

the “most important.”
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Amplitude Spectrum
• A plot of Ak versus k
• Gives a graphical representation of which 

frequencies are most important
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Example: Square Wave
Amplitude SpectrumW f m
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signal
More Complex Example
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Transforms
• The Fourier Series is only one of a set of 

representations (transforms) you will study later:
– Fourier TransformFourier Transform
– Laplace Transform
– Z Transform
T f   l   diff   f • Transforms are merely a different way of 
expressing the same data.  No information is lost 
or gained when taking a transform.g g
– Loose analogy: transform ~ translation

• We use transforms because
It i    diff t  f i i   d t di  – It gives us a different way of viewing or understanding 
the signal.

– Some operations on signals are easier to 
d t d/ l  ft  t ki  th  t funderstand/analyze after taking the transform.
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Summary
• Any signal can be expressed as the sum of cosines 

with different frequencies.
• Cosines in discrete time use normalized frequency  • Cosines in discrete time use normalized frequency, 

which has units of cycles/sample
• The amplitude spectrump p

– Is the weightings (sizes) of the different frequency 
components, Ak, plotted as a function of k

– Tells us important information about what the signal looks u mp f m u w g
like.

– Frequency components with the largest amplitudes are the 
“most important”m mp

• Knowledge of both the amplitude and phase 
spectrum is equivalent to knowledge of the signal.
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Appendix: Discrete Fourier Transform (DFT)
• The DFT takes a waveform x(n) and returns a set of N 

complex valued coefficients, called Fourier coefficients.
– The Fourier coefficients are denoted by Xk for k=0,1…(N-1)

Th  f l  (  i  f  hi  ) i– The formula (not important for this course) is

K
2 kn
N

N 1
j

k
n 0

X x(n)e   for k 0,1, , (N 1)
π−

−

=

= = −∑
This is the complex exponential

– For this course, we use MATLAB’s “fft” function to compute the Fourier 
coefficients.

This is the complex exponential
For more details wait until you take ELEC2100

• From the first N/2+1 Fourier coefficients, we can compute 
Ak and φk for k=0,1,…(N/2)k k

1 N
2kN

k 2

X k 0 or 
A

X otherwise
⎧ =⎪= ⎨
⎪⎩

k kXφ = ∠
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Appendix: complex numbers
• Define
• A complex number is given by z = a+jb, where

a is the “real” part = Re{z}

j 1= −

– a is the real  part = Re{z}
– b is the “imaginary” part = Im{z}

• Since a complex number has two parts, we can represent it 
  i t   2D l  (th  l  l )as a point on a 2D plane (the complex plane)

• By analogy with polar coordinates, we can define the 
magnitude and phase. Im z

2 2z a b
z arctan(b / a)
= +

∠ =
b z a jb= +

Im z

a z cos( z)
b z sin( z)
= ∠

= ∠

z

z∠
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Appendix: The DFT in MATLAB
• The MATLAB function “fft” implements the “Fast Fourier 

Transform,” a fast way to compute the DFT.
>> Xdft = fft(x);

returns an N dimensional vector containing the DFT 
coefficients. 

• We need to be a bit careful with MATLAB’s indexingg
– The first index of x(n) in our notation is n=0, but the first index 

of a vector in MATLAB starts with 1.
– Thus, if we represent a waveform x(n) for n=0,..(N-1) in a 

MATLAB vector x.  Then,
x(1)= x(0), x(2)= x(1),…, x(N)= x(N-1)

MATLAB signal

– Similarly, 
Xdft(1) = X0

MATLAB signal
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