ELEC1200: A System View of

Communications: from Signals to Packets
Lecture 12

*  Motivation
- Music as a combination of sounds at different frequencies

- Cosine waves
- Continuous time
- Discrete time

+ Decomposing signals into a sum of cosines
- Amplitude Spectrum
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Motivation: Music

*  Music is a combination of sounds with different frequencies:
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- In this lecture, we see that this is true of any waveform
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Visualizing the frequency content of music

* Windows Media Player
- Right click->Visualizations->Bars and Waves- >Bars
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Sinusoidal Waves

Cosine Wave Sine Wave
x(1) 5 x(1) N
2A x(t1) = cos(21§ft) = cps(é‘yl') 2A x(f) = sin(12nf1') :Isin(G)'r)

-2 T/2 T 3T /2 2T -2 T/2 T 3T /2 2T
t (sec) > t (sec) >
Parameters:
T = period (in seconds) )f _ T
f = frequency in hertz (cycles per second N ~
quency (cycles p ) 6 - onf

® = frequency in radians per second <
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We only need cosines

T

A sine wave is just a cosine with a phase shift of -3

cos(2nft + ¢)

§V7\_’/ $ = -n/2 (= sin(2nft) = cos [an'r — g]
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;\,/ db=n/4
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o— T~ =-ns2
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A negative phase shift introduces a delay of d = —¢l _ o7
2nf 2n
cos(2nft + $) = cos (an ('r - _¢~D = COS (an ('r — d))
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General Form

» Any sinusiodal signal can be expressed as

x(1) = A cos(2nft + o)

’ d=- %m‘ A = amplitude
| f = frequency
77777777777777777777777777777777777777777777777 ¢ = phase
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Discrete Time Cosines

Consider a discrete time cosine waveform with N samples:
cos(2rnfn + ¢) for n=0,1,...(N-1)

In the following, we assume N is even.

If we have only N samples, it turns out that we only need to
consider N/2+1 frequencies:

£ _k for k ¢ {O, 1 N} < fy is called a normalized frequency

2 It has units of cycles/sample

For all N, it is always true that O < f, < 0.5

k indicates how many times the cosine repeats in N samples
cos(2nf n) = cos(2nk %)

The larger k, the higher the frequency
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Discrete time cosines with varying f,

f, = 1/64
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Normalized vs continuous frequency

Given a continuous cosine of frequency f and sampling at
frequency F,, we get a set of samples x(n):

f = 1Hz cosine sampled at F, = 6Hz

~ n .
x(n) = cos(2nf — 1 i sample period
M =coserf D) i o — 1
f 0 \\ N / \ / Ts, = F
= cos(2n —n) s
F P N A ./
— cos(ann) 0 1/6 2/6 3/6 4/6 5/6 1 15 2 time in seconds

O 1 2 3 4 5 6 7 8 9 10 11 12 sampleindex

¢ cycles
Units of f are cycles per sample: f (Hz) _ ° e __cycles
F (Hz) =/  samples

frequency in Hz

Conversion: f‘( \
f=_ f=f-F
Fs s
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Sinusoidal Representation of Sampled Data

Any sampled data waveform x(n) with N samples:
x(n) for n=0,1,...(N-1)

can be expressed as the the sum of a N/2+1 cosine waves
with frequencies 9y
szﬁ for k € {0, 1%}

each term in the
summation is called a
frequency component

using the equation

N/2

x(n) = A, + D A cos(2nfn + ¢,)
k=1

This equation is called the Fourier series expansion of x(n)

Different waveforms are obtained by changing the values of
Ak and (I)k
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N/2

Interpretation of x(n) = Y A cos(2nfn + ¢,)

- A, controls the amplitude of the cosine with frequency f,.
¢, controls the phase of the cosine with frequency f,.

2
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Amplitude, Phase and Frequency
Amplitude A,

- tells us how much of each frequency there is.

- A, controls the average level of the signal and is
sometimes called the DC component.

Phase ¢,

- Not so important, just shifts each cosine left or right.

Frequency f,

- tells us about how quickly the signal changes

- Low frequencies (small k) indicate slow changes.
- High frequencies (large k) indicate fast changes.

We are most interested in the amplitude and how

it changes with k.

- The frequency components with the largest amplitude are
the “"most important.”
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Amplitude Spectrum

+ A plot of A, versus k

- Gives a graphical representation of which
frequencies are most important
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Example: Square Wave

Waveform Amplitude Spectrum
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More Complex Example
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Transforms

+ The Fourier Series is only one of a set of
representations (fransforms) you will study later:
- Fourier Transform
- Laplace Transform
- Z Transform

+ Transforms are merely a different way of
expressing the same data. No information is lost
or gained when taking a transform.

- Loose analogy: transform ~ translation

- We use transforms because

- It gives us a different way of viewing or understanding
the signal.

- Some operations on signals are easier to
understand/analyze after taking the transform.
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Summary

Any signal can be expressed as the sum of cosines
with different frequencies.

Cosines in discrete time use normalized frequency,
which has units of cycles/sample

The amplitude spectrum

- Is the weightings (sizes) of the different frequency
components, A,, plotted as a function of k

- Tells us important information about what the signal looks
like.

- Frequency components with the largest amplitudes are the
"most important”

Knowledge of both the amplitude and phase
spectrum is equivalent to knowledge of the signal.
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Appendix: Discrete Fourier Transform (DFT)

The DFT takes a waveform x(n) and returns a set of N
complex valued coefficients, called Fourier coefficients.
- The Fourier coefficients are denoted by X, for k=0,1..(N-1)
- The formula (not important for this course) is

N-1 + 21ikn
X, =Y x(n)e'N fork=0,1..,(N-1)

n=0
This is the complex exponential
For more details wait until you take ELEC2100

- For this course, we use MATLAB's "fft" function to compute the Fourier
coefficients.

From the first N/2+1 Fourier coefficients, we can compute
A, and ¢, for k=0,1,..(N/2)

_ %Xk k=0 or %
A {%Xk otherwise o = £X%,
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Appendix: complex numbers
Define J = \/jl

A complex number is given by z = a+jb, where

- a is the “real” part = Re{z}

- b is the "imaginary” part = Im{z}

Since a complex number has two parts, we can represent it
as a point on a 2D plane (the complex plane)

By analogy with polar coordinates, we can define the
magnhitude and phase. A Im 2

Z| = Va? + b?

£z = arctan(b / a)
a = |z| cos(£z)

b = |z|sin(£z)

z=a+ jb
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Appendix: The DFT in MATLAB

The MATLAB function "fft” implements the “"Fast Fourier
Transform,” a fast way to compute the DFT.

>> Xdft = FFE(x);

returns an N dimensional vector containing the DFT
coefficients.

We need to be a bit careful with MATLAB's indexing

- The first index of x(n) in our notation is n=0, but the first index
of a vector in MATLAB starts with 1.

- Thus, if we represent a waveform x(n) for n=0,..(N-1) in a
MATLAB vector x. Then,

x(1)= x(0), x(2)= x(1),.., x(N)= x(N-1)
MATLAB signal

- Similarly,
Xdft(l) = X,
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