Transport Layer

ELEC1200

Principles behind transport layer services
Multiplexing and demultiplexing

UDP

TCP Reliable Data Transfer

TCP Congestion Control

TCP Fairness

* The slides are adapted from ppt slides (in substantially unaltered form) available from “Computer

Networking. A Top-Down Approach,” 4 edition, by Jim Kurose and Keith Ross, Addison-Wesley, July
2007. Part of the materials are also adapted from ELEC315 and MIT 6.02 course notes.

Internet protocol stack

- application: supporting network
applications

. HTTP, SMTP, FTP, DNS

- transport: process-process data
transfer

. TCP, UDP

- network: routing of datagrams from
source to destination

. IP, routing protocols

. link: data transfer between
neighboring network elements

. 802.11, Ethernet
- physical: bits "on the wire"

Application

Transport

Network

Link

Physical

Transport services and protocols

trans~ort

provide /ogical communication ~
between app processes .
running on different hosts

transport protocols run in
end systems

- send side: breaks app
messages into segments,
passes to network layer

. rcv side: reassembles Nication
.) transport

segments Iinfo messages,
passes to app layer

more than one transport
protocol available to apps

. Internet: TCP and UDP

physical

Internet transport-layer protocols

- reliable, in-order ‘“’Fi';“f*.”" o
delivery (TCP) e
congestion control S Al — |/
flow control R T
connection setup - X
» unreliable, unordered - TN
delivery: UDP S a0
no-frills extension of mphysm _
“best-effort"” IP physical [merworkc | e

daTO llnk ne“-wor‘

physical data link

« Services not available:
delay guarantees
bandwidth guarantees

physical

Multiplexing/demultiplexing

- Demultiplexing at rcv host: — — Multiplexing at send host: _
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[] =socket O = process

Socket: a door between application process and end-end-
transport protocol (UDP or TCP)

application application application
L | |

transport %mipﬁ transport

network neTvl/ork network

link link link

physical physical physical

host 1 host 2 host 3 .

How demultiplexing works

host receives IP datagrams

- each datagram has source
IP address, destination IP
address

- each datagram carries 1
transport-layer segment

- each segment has source,
destination port number

host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

UDP: User Datagram Protocol [RFC 768]

“no frills,"” “bare bones"
Internet transport Why is there a UDP?
E’"OTOCOI) | no connection

best effort” service, UDP establishment (which can
segments may be: add delay)

. lost

simple: no connection state
. delivered out of order at sender, receiver

To app small segment header
connectionless: no congestion control: UDP
- ho handshaking between can blast away as fast as

UDP sender, receiver desired

- each UDP segment
handled independently
of others

UDP: more

often used for streaming

multimedia apps

« 32 bits

loss tolerant Length, in |Source port #| dest port #
rate sensitive bytes of UDP [~ length checksum
segment,
other UDP uses including
DNS header
SNMP

reliable transfer over UDP:
add reliability at
application layer

Application
data
(message)

application-specific

error recoveryl

UDP segment format

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Sender: Receiver:
treat segment contents « compute checksum of
as sequence of 16-bit received segment
integers - check if computed checksum
checksum: addition (1's equals checksum field value:
complement sum) of . NO - error detected
segment contents . YES - no error detected.
sender puts checksum But maybe errors
value into UDP checksum nonetheless? More later

field

TCP: Overview

« point-to-point:

one sender, one receiver
- reliable, in-order byte

stream.

no "message boundaries”
- pipelined:

TCP congestion and flow

control set window size

. send & recerve buffers

socket
door

TCP TCP
send buffer receive buffer

() Segment] —p ()

RFCs: 793, 1122, 1323, 2018, 2581

» full duplex data:

bi-directional data flow
In same conhnection

MSS: maximum segment
sSize
« cohnection-oriented:

handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

. flow controlled:

e+ sender will not

" door

overwhelm receiver

10

TCP segment structure

URG: urgent data
(generally not used)\

source port #

32 bits

dest port #

~

sequence number

ACK: ACK #
valid \kngwledgemen’r number
PSH: push data now h!ead o APRRIS|F| Receive window

(generally not used)—|

 cheeksum,
/

Urg data pnter

RST, SYN, FIN:—
connection estab

Op]‘/id(s (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

counting

by bytes

of data

(not segmentsl)

bytes
rcvr willing
to accept

11

Principles of Reliable data transfer

important in app., transport, link layers
top-10 list of important networking topics!

sending receiver
Drocess process
1

d d
L()relidble c:hcmhel)j rat_send()
reliable data

fransfer protocol
(sending side)

application
layer

deliver data()

relioble data
fransfer protocol
(receiving side)

udt_send()I [packet [packet] Irdt rev ()

T—b(‘)unrelic:ble Chcmhel);r

(a) provided service (b) service implementation

transport
layer

« characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Stop-and-wait & Pipelined protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
. range of sequence numbers must be increased
- buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

. Two generic forms of pipelined protocols: go-Back-N,
selective repeat

13

Stop-and-wait protocol

sender receiver
first bit transmitted, t = 0

last bit transmitted, t = L/ Ry

| first packet bit arrives
RTT Hast packet bit arrives, send ACK

ACK arrives, send nexty
packet, t=RTT+L/R

//

v o e v Assume L/R = 0.008 ms
and RTT =30 ms

y ._ L/R 008

sender RTT+L/R ~30.008

= 0.00027

Transport Layer 14

Pipelining: increased

sender

first packet bit transmitted, t = 0 —
last bit transmitted, t = L/ RT

RTT ~_

ACK arrives, send next,
packet, t=RTT+L/R_

utilization

receiver

first packet bit arrives

last packet bit arrives, send ACK

> last bit of 2" packet arrives, send ACK
last bit of 37 packet arrives, send ACK

Increase utilization
/ by a factor of 3!

0.0008

15

Principles of Congestion Control

Congestion:

« informally: "foo many sources sending too much
data too fast for network to handle"

- manifestations:
- lost packets (buffer overflow at routers)
- long delays (queueing in router buffers)

+ a top-10 problem!

16

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion
control:

no explicit feedback from
network

congestion inferred from

end-system observed loss,

delay
approach taken by TCP

Network-assisted
congestion control:

routers provide feedback
to end systems
. single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

. explicit rate sender
should send at

17

TCP cohgestion control: additive increase,
multiplicative decrease

O Approach.increase transmission rate (window size),

probing for usable bandwidth, until loss occurs
CongWin

RTT
O additive increase. increase CongWin by 1 MSS

every RTT until loss detected

O multiplicative decrease: cut CongWin in half after
I O s S congestion

Saw tooth
behavior: probing
for bandwidth

rate = Bytes/sec

24 Kbytes —

16 Kbytes —

8 Kbytes —

congestion window size

» time

Transport Layer 17

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

1 4
Tcp ﬂoﬂleneck
router

2
cohnection capacity R

19

Why is TCP fair?

Two competing TCP connections:
- Additive increase gives slope of 1, as throughout (rate) increases
« Multiplicative decrease decreases throughput proportionally

equal bandwidth share

YV

loss: decrease window by factor of 2
cgngestion avoidance: additive increase

loss: decrease window by factor of 2
ngestion avoidance: additive increase

Connection 2 throughput

Connection 1 throughput R

Transport Layer 20

Fairness (more)

Fairness and UDP Fairness and parallel TCP
. Multimedia apps often ~ connections
do not use TCP » nothing prevents app from
. do not want rate opening Pam”el
throttled by congestion connections between 2
control hosts.

« Instead use UDP: Web browsers do this

: PumErGUEiO/T Vid$°| at _+ Example: link of rate R
constant rate, Tolerate supporting 9 connections;

packet loss < for 1P out
+ Research area: TCP B bl , gets
friendly - new app asks for 11 TCPs,

gets R/2 |

21

Summary

- Principles behind transport layer services:
. multiplexing, demultiplexing
- reliable data transfer
. flow control
. congestion control

 Internet provides two transport protocols
. UDP
. TCP

22

